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Equations are obtained for the temperature variation of each material
and of the gas for heating and cooling of a fixed bed composed of two
materials with different thermophysical properties.

In the heating of materials in shaft furnaces, roast-
ing of ferrous and nonferrous ores, and in similar
technical processes, heat is applied to a bed of solid
particles, consisting of a minimum of two materials
possessing different thermophysical properties (mass
heat capacity, density, etc.). The well-known solu~
tion for the Schumann problem {1} applies to a bed of
uniform material.,

It is evident that in a two-component bed of par-
ticles of the same size, the material with the smaller
volume heat capacity will be heated faster by the gas
than the material with the larger volume heat capa-
city. A temperature difference results between two
neighboring particles of the different materials at the
same horizontal level, causing a heat flux between
the particles., Calculation shows that the temperature
difference between particles at one horizontal level
under certain conditions causes a heat flux tens of
times larger than that due to the temperature differ-
ence along the channel formed between the lumps of
material through which the gas flows. It has been
shown by Chukhanov {2], that if the particles have no
sharp projections or angularities, the heat flux com-
ponent due to thermal conduction is negligibly small.
The radiative component should not be neglected. In
an exact calculation of radiative heat exchange between
particles heated by a gas, a solution of the problem
may be obtained, because of nonlinearity of the bound-
ary conditions, only with the aid of electronic com-
puters. Earlier work by the authors [3] has shown that,
to an accuracy sufficient for engineering calculations,
the law of thermal interaction between particles may
be represented by Newton's law, in which the heat
transfer coefficient o.,q is computed from the formula
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Accurate determination of Cpy for a bed of spheri-
cal particles is both laborious and complex. For sim-
plicity it is expedient to assume that channels are
formed in the bed in the direction of motion of the gas,
the surface area of the channels being equal to the total
surface area of the particles of both materials. The
fraction of the channel surface area allotted to one of
the materials will depend on its amount (percentage
content in the mixture II). Knowing the particle sur-

face area, we may find the reduced radiation coeffi-
cient from the expression [4]

cn=c(,/(—l~+~f—‘~'—+-f‘—’i). (2)
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where ¢y, is the radiation coefficient of particles of
the second material relative to the first, Its value is
calculated on the assumption that the channel formed
by the mixture of particles is a closed system of the
two surfaces, for which
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Taking into account the above-mentioned mutual
heat exchange between particles, and considering a
bed element of height dH and 1 m® in area, we may
write the following equations to describethe heattrans-
fer between the flowing gas and the fixed two-com-
ponent bed:
for the first material

o T = al g t) Fanala— ). @)
for the second material

eV T = afilg— ) —andl— 1), 6
for the gas stream

—wey T8 —afitg—t) +allg—t).

The boundary conditions of the problem are
H=20, t = T,

T=0, ty=t,=0. )
Equations (4)—(6) hold for a bed whose materials
have infinitely large thermal conductivity. The valid-
ity of this assumption is confirmed by the fact that in
the majority of cases the values of Biot number cal-
culated for a bed of solid particles prove to be less

than 0.5.
Introducing the new variables

Y =afHmuwey, Z=afate 0
and the notation
1= foffys = Y1/PaCs¥a, A=apyaf,
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we transform the system of equations (4)~(7) to the
form

ot
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with the following boundary conditions:
Y =0, tg=T,
Z =0, t, =1,=0. 11)
We apply a Laplace-Carson transformation to (8)
and (9). Then in the transforms we have
PZ = Z:g—7l -+ A.(_tz ’”‘?1), (12)
ply = mn (tg—1) — mA, —1), 13)

from which El and ’Ez may be found as functions of fg:
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Equation (10) in transforms, taking account of (14)
and (15), and after a number of transformations, takes
the form
dotg  —
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The solution of this equation, satisfying the bound-
ary conditions, is

{16)

%:Tam—u+myw

p (1 + mn®) + mn(14+n)+ Am (1 + 1% Y. 1)

X exp
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To find the original of (17) it is necessary to trans-
form the denominator of the exponent, reducing it to
the following form:

(p—Ry)(p—Rs) = (p+ A-+1)(p + mn + Am) — A*m. (18)
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From this the roots of the quadratic equation may
be found. They are

Rm=—~%Mm+Am+A+ni

+ —;—V(mn +Am + A+ 1) —4 [mnt Am(1 +n)f - (19)

Finally, (17) may be transformed to the form
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where
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Using the formula (5)
F{p+A) ~f(Zyexp(—MrZ)+ fkf(e)exp(-—~h5)da (22)
0
and the transition formula

exp (B/p) -~ 1,12 V' BZ1, (23)

we obtain the original of the function for the gas stream
temperature. In final form, the distribution of gas
temperature in the bed is described by the equation
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To determine the temperature of the first material
we use (8) and (9). Eliminating the unknown t;, we ob-
tain an equation for calculating ti,

67.‘1 o 1 +n 1 +n A dtg
2Ll 4+ A——|=[1+4 fo-b —— (25
0z l( + n ) ( + n ) g n oY (29)

the solution of which has the formv

Calculated Bed Temperatures

Tem-~ t, °C, for Z values of
Method of calculation perature o ‘ ) ‘ 3
According to equations (24), iy 100 318 601
(26)-(28) f 0.0 150 532
Iy 0.0 160 557
From the Schumann graphs for a uni- tg L0 315 688
form bed of equivalent heat capacity tu 0.0 153 535
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Proceeding similarly with (9) and (10), for calcu-
lating t, we obtain the expression

zZ
1+n A Olg
ty =mn 1+ 4 t
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Determination of the integrals in (26) and (27) re-
quires a knowledge of ty and 8t / 9Y; tg is determined
from (24), and for atg/ 9Y we obtam respectively,

)( —2) ] (27)
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For numerical calculation in not particularly im-
portant cases, the curve Btg/BY = f(Z) may be con-
structed from the graphs of Schumann et al. {5].

When one of the materials is not present in the bed
and there is no heat transfer between particles, i.e.,
when n = 0, A =0, equations (24) and (26)—(28) trans-
form to the well-known equations describing heating
of a single material [6].

Analysis of the original differential equations al-
lows a more sharply drawn conclusion regarding
preferential heating of one of the materials. In fact,
for time zero, as follows from (8) and (9), the rela-
tion

Oty : _Q.tl_=m - I : h
oz 0z P20 P16 Y1

is valid, from which it is seen that the rate of heating,
for example, of the second material, will in general
be the greater, the greater the surface area corre-
sponding to unit volume heat capacity of the material.

On the basis of the formulas obtained, we calcu-
lated the heating of a bed consisting of ore (90% by
weight) and coke (10%) by a gas at a temperature of
1000° C. The bed is composed of near-spherical par-
ticles and with a mean diameter of 0.005m. The heat
capacities of 1 m® of ore and coke are, respectively,
1280 and 910 kJ/m?- degree, and that of the gas is
1.17 kJ/m?®- - degree. The gas velocity, referred to the
free shaft section, is 0.5 m/sec. The bed initial tem-
perature is 0° C. The calculated coefficient of con-
vective heat transfer turned out to be 87.3 W/m? - de-
gree, while the coefficient of heat transfer between
particles was 84.8 W/m?- degree. The results of the
calculation for Y = 2.0 are shown in the table as a
function of Z. Also given are the results of calcula-
tions according to the Schumann graphs for a uniform
bed possessing a volume heat capacity equivalent to
the bed of two materials, ‘For a uniform bed Y, = 2.53,
and the relation between 7 and Z;, has the form Z; =
=1.063 Z.

Comparison of the results obtained shows that for
approximate calculations it is possible to recommend
the following scheme for determining the temperatures
tg, ty and t; in a two-component bed with the amount
of one of the components <10%: first, the parameters
Y, and Z; are calculated for a uniform bed of equiva-
lent heat capacity. Then from the graphs of [6] the
guantities tg and Btg/aY are determined, and the tem-
peratures t; and t; are computed from equations (26)
and (27).

When the content of the second material in the bed
is large, and in accurate calculations, it is necessary
to use formulas (24), (26), and (27).

NOTATION

@i is the fraction of material in 1 m? of bed; fi is
the surface area of material in 1 m® of bed; T is the
percentage content of material in mixture; Cp, Cy are
the radiation coefficients; a; is the absorptivity of
particle material; ri is the reflectivity of particle ma-
terial; ci, ¢ is the mass heat capacity of material and
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gas;v;, v are the bulk density of material and gas den-
sity; w is the gas velocity; t;,t are the temperature of
material and gas; T is the mean gas temperature; o
is the coefficient of heat transfer from gas to surface
of materials; apqq is the coefficient of mutual heat
transfer between particles; H is the bed height; T is
the time; Y = af,H/wev is the bed height parameter;

Z = afit/peyy; is the time parameter. Subscripts 1, 2
indicate that the parameters belong to the first or to
the second material,
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